ar X iv : m at h - ph / 0 50 70 28 v 1 1 2 Ju l 2 00 5 The MICZ - Kepler problems in all dimensions

نویسنده

  • Guowu Meng
چکیده

The Kepler problem is perhaps the most well-known physics problem in the last three centuries. The MICZ-Kepler problems are its natural cousins. While the Kepler problem exists obviously in high dimensions, only the 5-dimensional analogues of the MICZ-Kepler problems were discovered previously. In this paper, we demonstrate that the quantum MICZ-Kepler problems do exist in all dimensions greater than two. The existence of the Runge-Lenz vector and the hidden dynamical symmetry are exhibited; consequently, the energy spectrums and the energy eigenspaces for the bound states are obtained for the MICZ-Kepler problems in all high dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 4 . 29 36 v 2 [ m at h - ph ] 2 4 Ju l 2 00 7 GENERALIZED MICZ - KEPLER PROBLEMS AND UNITARY HIGHEST WEIGHT MODULES – II

For each integer n ≥ 2, we demonstrate that a 2n-dimensional generalized MICZ-Kepler problem has an g Spin(2, 2n+1) dynamical symmetry which extends the manifest Spin(2n) symmetry. The Hilbert space of bound states is shown to form a unitary highest weight g Spin(2, 2n+1)-module which occurs at the first reduction point in the Enright-Howe-Wallach classification diagram for the unitary highest ...

متن کامل

ar X iv : 0 70 4 . 29 36 v 3 [ m at h - ph ] 9 A ug 2 00 7 GENERALIZED MICZ - KEPLER PROBLEMS AND UNITARY HIGHEST WEIGHT MODULES – II

For each integer n ≥ 2, we demonstrate that a 2n-dimensional generalized MICZ-Kepler problem has an g Spin(2, 2n+1) dynamical symmetry which extends the manifest Spin(2n) symmetry. The Hilbert space of bound states is shown to form a unitary highest weight g Spin(2, 2n+1)-module which occurs at the first reduction point in the Enright-Howe-Wallach classification diagram for the unitary highest ...

متن کامل

ar X iv : 0 71 1 . 10 37 v 1 [ m at h - ph ] 7 N ov 2 00 7 Generalizations of MICZ - Kepler system

We discuss the generalizations of the MICZ-Kepler system (the system describing the motion of the charged particle in the field of Dirac dyon), to the curved spaces, arbitrary potentials and to the multi-dyon background. The integrable system describing the motion of the charged particle in the field of Dirac dyon (magnetic monopole carrying the electric charge) has been suggested independently...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008